Solving a Hamiltonian Path Problem with a bacterial computer

نویسندگان

  • Jordan Baumgardner
  • Karen Acker
  • Oyinade Adefuye
  • Samuel Thomas Crowley
  • Will DeLoache
  • James O Dickson
  • Lane Heard
  • Andrew T Martens
  • Nickolaus Morton
  • Michelle Ritter
  • Amber Shoecraft
  • Jessica Treece
  • Matthew Unzicker
  • Amanda Valencia
  • Mike Waters
  • A Malcolm Campbell
  • Laurie J Heyer
  • Jeffrey L Poet
  • Todd T Eckdahl
چکیده

BACKGROUND The Hamiltonian Path Problem asks whether there is a route in a directed graph from a beginning node to an ending node, visiting each node exactly once. The Hamiltonian Path Problem is NP complete, achieving surprising computational complexity with modest increases in size. This challenge has inspired researchers to broaden the definition of a computer. DNA computers have been developed that solve NP complete problems. Bacterial computers can be programmed by constructing genetic circuits to execute an algorithm that is responsive to the environment and whose result can be observed. Each bacterium can examine a solution to a mathematical problem and billions of them can explore billions of possible solutions. Bacterial computers can be automated, made responsive to selection, and reproduce themselves so that more processing capacity is applied to problems over time. RESULTS We programmed bacteria with a genetic circuit that enables them to evaluate all possible paths in a directed graph in order to find a Hamiltonian path. We encoded a three node directed graph as DNA segments that were autonomously shuffled randomly inside bacteria by a Hin/hixC recombination system we previously adapted from Salmonella typhimurium for use in Escherichia coli. We represented nodes in the graph as linked halves of two different genes encoding red or green fluorescent proteins. Bacterial populations displayed phenotypes that reflected random ordering of edges in the graph. Individual bacterial clones that found a Hamiltonian path reported their success by fluorescing both red and green, resulting in yellow colonies. We used DNA sequencing to verify that the yellow phenotype resulted from genotypes that represented Hamiltonian path solutions, demonstrating that our bacterial computer functioned as expected. CONCLUSION We successfully designed, constructed, and tested a bacterial computer capable of finding a Hamiltonian path in a three node directed graph. This proof-of-concept experiment demonstrates that bacterial computing is a new way to address NP-complete problems using the inherent advantages of genetic systems. The results of our experiments also validate synthetic biology as a valuable approach to biological engineering. We designed and constructed basic parts, devices, and systems using synthetic biology principles of standardization and abstraction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding the Shortest Hamiltonian Path for Iranian Cities Using Hybrid Simulated Annealing and Ant Colony Optimization Algorithms

  The traveling salesman problem is a well-known and important combinatorial optimization problem. The goal of this problem is to find the shortest Hamiltonian path that visits each city in a given list exactly once and then returns to the starting city. In this paper, for the first time, the shortest Hamiltonian path is achieved for 1071 Iranian cities. For solving this large-scale problem, tw...

متن کامل

An iterative method for the Hermitian-generalized Hamiltonian solutions to the inverse problem AX=B with a submatrix constraint

In this paper, an iterative method is proposed for solving the matrix inverse problem $AX=B$ for Hermitian-generalized Hamiltonian matrices with a submatrix constraint. By this iterative method, for any initial matrix $A_0$, a solution $A^*$ can be obtained in finite iteration steps in the absence of roundoff errors, and the solution with least norm can be obtained by choosing a special kind of...

متن کامل

Solving Path Following Problem for Car-Like Robot in the Presence of Sliding Effect via LMI Formulation

One of the main problems of car-like robot is robust path following in the presence of sliding effect. To tackle this problem, a robust mix H2/H∞ static state feedback control method is selected. This method is the well-known linear robust controller which is robust against external disturbance as well as model uncertainty. In this paper, the path following problem is formulated as linear matri...

متن کامل

A Surface-Based DNA Algorithm for the Expansion of Symbolic Determinants

In the past few years since Adleman’s pioneering work on solving the HPP(Hamiltonian Path Problem) with a DNA-based computer [1], many algorithms have been designed on solving NP problems. Most of them are in the solution bases and need some error correction or tolerance technique in order to get good and correct results [3] [7] [9] [11] [21] [22]. The advantage of surface-based DNA computing t...

متن کامل

A Light-Based Device for Solving the Hamiltonian Path Problem

In this paper we suggest the use of light for performing useful computations. Namely, we propose a special device which uses light rays for solving the Hamiltonian path problem on a directed graph. The device has a graph-like representation and the light is traversing it following the routes given by the connections between nodes. In each node the rays are uniquely marked so that they can be ea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Biological Engineering

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009